Source code for bluepyopt.deapext.optimisations

"""Optimisation class"""

"""
Copyright (c) 2016-2022, EPFL/Blue Brain Project

 This file is part of BluePyOpt <https://github.com/BlueBrain/BluePyOpt>

 This library is free software; you can redistribute it and/or modify it under
 the terms of the GNU Lesser General Public License version 3.0 as published
 by the Free Software Foundation.

 This library is distributed in the hope that it will be useful, but WITHOUT
 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
 FOR A PARTICULAR PURPOSE.  See the GNU Lesser General Public License for more
 details.

 You should have received a copy of the GNU Lesser General Public License
 along with this library; if not, write to the Free Software Foundation, Inc.,
 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
"""

# pylint: disable=R0912, R0914


import random
import logging
import functools

import deap
import deap.base
import deap.algorithms
import deap.tools

from . import algorithms
from . import tools
from . import utils

import bluepyopt.optimisations

logger = logging.getLogger('__main__')

# TODO decide which variables go in constructor,which ones go in 'run' function
# TODO abstract the algorithm by creating a class for every algorithm, that way
# settings of the algorithm can be stored in objects of these classes


[docs] class WeightedSumFitness(deap.base.Fitness): """Fitness that compares by weighted sum""" def __init__(self, values=(), obj_size=None): self.weights = [-1.0] * obj_size if obj_size is not None else [-1] super(WeightedSumFitness, self).__init__(values) @property def weighted_sum(self): """Weighted sum of wvalues""" return sum(self.wvalues) @property def sum(self): """Weighted sum of values""" return sum(self.values) def __le__(self, other): return self.weighted_sum <= other.weighted_sum def __lt__(self, other): return self.weighted_sum < other.weighted_sum def __deepcopy__(self, _): """Override deepcopy""" cls = self.__class__ result = cls.__new__(cls) result.__dict__.update(self.__dict__) return result
[docs] class WSListIndividual(list): """Individual consisting of list with weighted sum field""" def __init__(self, *args, **kwargs): """Constructor""" self.fitness = WeightedSumFitness(obj_size=kwargs['obj_size']) del kwargs['obj_size'] super(WSListIndividual, self).__init__(*args, **kwargs)
[docs] class DEAPOptimisation(bluepyopt.optimisations.Optimisation): """DEAP Optimisation class""" def __init__(self, evaluator=None, use_scoop=False, seed=1, offspring_size=10, eta=10, mutpb=1.0, cxpb=1.0, map_function=None, hof=None, selector_name=None): """Constructor Args: evaluator (Evaluator): Evaluator object use_scoop (bool): use scoop map for parallel computation seed (float): Random number generator seed offspring_size (int): Number of offspring individuals in each generation eta (float): Parameter that controls how far the crossover and mutation operator disturbe the original individuals mutpb (float): Mutation probability cxpb (float): Crossover probability map_function (function): Function used to map (parallelise) the evaluation function calls hof (hof): Hall of Fame object selector_name (str): The selector used in the evolutionary algorithm, possible values are 'IBEA' or 'NSGA2' """ super(DEAPOptimisation, self).__init__(evaluator=evaluator) self.use_scoop = use_scoop self.seed = seed self.offspring_size = offspring_size self.eta = eta self.cxpb = cxpb self.mutpb = mutpb self.map_function = map_function self.selector_name = selector_name if self.selector_name is None: self.selector_name = 'IBEA' self.hof = hof if self.hof is None: self.hof = deap.tools.HallOfFame(10) # Create a DEAP toolbox self.toolbox = deap.base.Toolbox() self.setup_deap()
[docs] def setup_deap(self): """Set up optimisation""" # Number of objectives OBJ_SIZE = len(self.evaluator.objectives) # Set random seed random.seed(self.seed) # Eta parameter of crossover / mutation parameters # Basically defines how much they 'spread' solution around # The lower this value, the more spread ETA = self.eta # Number of parameters IND_SIZE = len(self.evaluator.params) if IND_SIZE == 0: raise ValueError( "Length of evaluator.params is zero. At least one " "non-fix parameter is needed to run an optimization." ) # Bounds for the parameters LOWER = [] UPPER = [] for parameter in self.evaluator.params: LOWER.append(parameter.lower_bound) UPPER.append(parameter.upper_bound) # Register the 'uniform' function self.toolbox.register("uniformparams", utils.uniform, LOWER, UPPER, IND_SIZE) # Register the individual format # An indiviual is create by WSListIndividual and parameters # are initially # picked by 'uniform' self.toolbox.register( "Individual", deap.tools.initIterate, functools.partial(WSListIndividual, obj_size=OBJ_SIZE), self.toolbox.uniformparams) # Register the population format. It is a list of individuals self.toolbox.register( "population", deap.tools.initRepeat, list, self.toolbox.Individual) # Register the evaluation function for the individuals # import deap_efel_eval1 self.toolbox.register( "evaluate", self.evaluator.init_simulator_and_evaluate_with_lists ) # Register the mate operator self.toolbox.register( "mate", deap.tools.cxSimulatedBinaryBounded, eta=ETA, low=LOWER, up=UPPER) # Register the mutation operator self.toolbox.register( "mutate", deap.tools.mutPolynomialBounded, eta=ETA, low=LOWER, up=UPPER, indpb=0.5) # Register the variate operator self.toolbox.register("variate", deap.algorithms.varAnd) # Register the selector (picks parents from population) if self.selector_name == 'IBEA': self.toolbox.register("select", tools.selIBEA) elif self.selector_name == 'NSGA2': self.toolbox.register("select", deap.tools.emo.selNSGA2) else: raise ValueError('DEAPOptimisation: Constructor selector_name ' 'argument only accepts "IBEA" or "NSGA2"') import copyreg import types copyreg.pickle(types.MethodType, utils.reduce_method) if self.use_scoop: if self.map_function: raise Exception( 'Impossible to use scoop is providing self ' 'defined map function: %s' % self.map_function) from scoop import futures self.toolbox.register("map", futures.map) elif self.map_function: self.toolbox.register("map", self.map_function)
[docs] def run(self, max_ngen=10, offspring_size=None, continue_cp=False, cp_filename=None, cp_frequency=1, cp_period=None, parent_population=None, terminator=None): """Run optimisation""" # Allow run function to override offspring_size # TODO probably in the future this should not be an object field # anymore # keeping for backward compatibility if offspring_size is None: offspring_size = self.offspring_size # Generate the population object if parent_population is not None: if len(parent_population) != offspring_size: offspring_size = len(parent_population) self.offspring_size = len(parent_population) logger.warning( 'The length of the provided population is different from ' 'the offspring_size. The offspring_size will be ' 'overwritten.' ) OBJ_SIZE = len(self.evaluator.objectives) IND_SIZE = len(self.evaluator.params) pop = [] for ind in parent_population: if len(ind) != IND_SIZE: raise Exception( 'The length of the provided individual is not equal ' 'to the number of parameter in the evaluator ') pop.append(WSListIndividual(ind, obj_size=OBJ_SIZE)) else: pop = self.toolbox.population(n=offspring_size) stats = deap.tools.Statistics(key=lambda ind: ind.fitness.sum) import numpy stats.register("avg", numpy.mean) stats.register("std", numpy.std) stats.register("min", numpy.min) stats.register("max", numpy.max) param_names = [] if hasattr(self.evaluator, "param_names"): param_names = self.evaluator.param_names pop, hof, log, history = algorithms.eaAlphaMuPlusLambdaCheckpoint( pop, self.toolbox, offspring_size, self.cxpb, self.mutpb, max_ngen, stats=stats, halloffame=self.hof, cp_frequency=cp_frequency, cp_period=None, continue_cp=continue_cp, cp_filename=cp_filename, terminator=terminator, param_names=param_names) # Update hall of fame self.hof = hof return pop, self.hof, log, history
[docs] class IBEADEAPOptimisation(DEAPOptimisation): """IBEA DEAP class""" def __init__(self, *args, **kwargs): """Constructor""" super(IBEADEAPOptimisation, self).__init__(*args, **kwargs)